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ABSTRACT: This work presents two new related aspects in heavy-metal adsorption. The first aspect is the use of Cloisite
VR

C20A-

polycaprolactone (C20A-PCL) composite with the aid of dry Na2SO4 in Pb(II) extraction from water. The composite was fabricated

by means of the melt-blending method at a filler loading rate of 3% (w/w). This material was able to remove 87% of Pb(II) from

water despite the fact that the polymer is a thermoplastic and the C20A is hydrophobic. The second aspect is the modeling of the

adsorption data obtained using polymer-clay composites synthesized via the melt-blending method by artificial neural networks. A

network with 10 neurons and using TRAINLM, and employing tansig function in the input layer and purelin in the output layer was

found to be optimal. The network was used to predict the adsorption efficiency of Pb(II) by several clay-polymer composites and the

correlation was satisfactory. VC 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3894–3901, 2013
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INTRODUCTION

Because of the sustained and rapid increase in industrialization

worldwide, the pollution of water cannot be eliminated but could

be minimized by controlling the waste generation. Once the

water has been polluted, it should be cleaned. Every individual

and company is obligated by international laws to avoid environ-

mental pollution to protect aquatic life. Furthermore, the big

challenge facing governments nowadays is the scarcity of clean

water available for household consumption. One of the biggest

challenges in water treatment is that each pollutant has a unique

chemistry hence it needs specialized treatment. It is for this rea-

son that much research has been done in this field and that a

large number of publications have been produced for the com-

mon water pollutants like Pb(II). Even though, a huge amount

of work has been done on the removal of Pb(II) from water

using adsorption,1–7 a lot of research work is still being under-

taken using newly developed adsorbents. Every research study on

the adsorption of Pb(II) from aqueous environments is generally

targeted at producing chemically and thermally stable adsorbents,

reproducible adsorbents, and high adsorption efficiency.

These ambitious research projects have seen the introduction of

polymer composites for use in water treatment.1,8–11

Polymer composite materials are generally made of two or more

components containing a polymer as a matrix. Clay-polymer

composites are common in water treatment because of the

adsorptive properties of the clay. Clay-polymer composites can be

easily recovered after adsorption, unlike powder adsorbents like

activated carbon. The performance of the composites as an

adsorbent can be affected by the fabrication technique used

because a synthesis method is selected based on the chemical

and/or physical properties of the polymer to be used, among

other factors. There are three methods widely used in the prepa-

ration of clay-polymer composites: solution blending, melt-

blending, and in situ polymerization.12–14 The melt-blending

method uses thermoplastic polymers. Unfortunately such

polymers are usually hydrophobic. However, the hydrophobic

polymers are essential in preparing water-stable materials. Water-

stable adsorbents can be regenerated and reused through adsorp-

tion/desorption experiments, thus reducing the operating costs.

An ideal water-treatment procedure should be compatible with

engineering tools for optimum control and management. Artifi-

cial neural networks (ANN) have been successfully applied in

recent years, especially to water-treatment systems. ANN is a

data-based method for modeling that can present mathematical

functions for both linear and nonlinear systems.15 Neural net-

works (NN) are based on mapping input vectors and the corre-

sponding target vectors during training until it can approximate

a function that associates the input vectors with the specific

output vectors. In addition to curve fitting, NN can be used as

pattern recognition, clustering, and dynamic time-series tools.

In curve-fitting mode, once a network has been created and

configured, it should be trained, validated and tested. During
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training, the weights and biases of the network are iteratively

tuned to lessen the error between the input and the output.

The weights and biases can be adjusted manually or automati-

cally. ANN have been successfully applied in the environmental

engineering field like heavy-metal removal from water using dif-

ferent adsorbents.16,17 Since, a network is created and config-

ured relative to the data set being used, it is important that

every special material (adsorbent) be given a particular focus

for investigation.

In the present study, we proposed a two-layer ANN model

using a feed-forward propagation algorithm for modeling Pb(II)

adsorption by polymer-clay composites. An optimization study

to determine the optimal number of neurons, data distribution,

and transfer function was done and the model was used to pre-

dict the effects of selected adsorption parameters, namely initial

concentration of Pb(II) ions, initial pH, and temperature. This

study is important because the stability (thermally and chemi-

cally) and ease of recovery of polymer composites developed

using the melt-blending method of composite synthesis suggests

that these materials could be the next generation of adsorbents

in water treatment. Studies like this one are expected stimulate

interest in integrating polymer-nanocomposite strips in real

water treatment to improve adsorbent recovery. A computer-

simulated model like ANN is necessary in developing an auto-

mated wastewater-treatment plant to lower the operating cost of

the treatment plant.

MATERIALS AND PROTOCOL

Fabrication of Composites

The composites were fabricated with ethylene vinyl acetate

(EVA) with 10% VA (Plastamid, Johannesburg, South Africa),

and polycaprolactone (PCL) (Aldrich Chemicals, Johannesburg,

South Africa) as the matrices. Cloisite
VR

20A (C20A) (Southern

Clay Products, TX) and Bentonite Ocean MD (MD) (G&W

Minerals, Wadeville, South Africa) clays were used as the filler.

Since the polymers are hydrophobic, dry sodium sulfate (15%

w/w) was used to improve water permeation. A Thermo Scien-

tific HAAKE Rheomex OS equipped with roller-type rotors

coupled with a single-screw extruder was used in the melt-

blending method. The fabrication was done in a mixing cham-

ber with a volume of 64 cm3; a temperature set at 100�C; a

rotational speed of 60 rpm; and a residence time of 30 min.

The composites were then chopped into small chips, which

were fed into the extruder to obtain strips. The composite strips

were soaked in 1000 ml of deionized water for 24 h with vigor-

ous stirring to remove leachable Na1 and SO4
22 ions.

The physical properties of these composites were reported and

discussed in our previously published work.8,9

Data Collection

The C20A-PCL composite was used to remove Pb(II) from

water using Pb(NO3)2 as a source of Pb(II) ions. Batch-

adsorption experiments were conducted to establish the opti-

mum pH, contact time, initial concentration, and the effect of

temperature on the uptake of Pb(II). The adsorbent weight was

20 mg and the volume of the analyte solutions was about 20

ml. The initial pH of the solution was adjusted using 0.1M

KOH or HCl. After adsorption the solutions were analyzed for

any remaining Pb(II) concentration using atomic adsorption

spectroscopy (AAS) operated at a wavelength of 283.3 nm with

a corresponding slit width of 0.5 nm. The performance of the

adsorbents in Pb(II) extraction from water is reported in

adsorption efficiency (R(%)), which was calculated using the

following relation:

Rð%Þ51003 12
Ct

C0

� �
(1)

where Co and Ct are the initial concentration and the concen-

tration at time t, respectively.

To enlarge the quantity of data to satisfy the ANN creation and

configuration, the Pb(II) adsorption data collected using C20A-

EVA, MD-EVA, and MD-PCL as adsorbents8,9 were used.

ANN Software

In this study, the training, validation and testing of the ANN

model was carried out using the Neural Network Toolbox
TM

on

MATLAB 7.11.0 (R2010b) mathematical software. A two-layer

feed forward neural network (NN) with purelin transfer func-

tion in the output layer was used. The adsorption efficiency was

chosen as the output, and 100 experimental data points

obtained using C20A-EVA, MD-EVA, C20A-PCL, and MD-PCL

composites as adsorbents were used to feed the network.

RESULTS AND DISCUSSIONS

Optimizing Network

Network Architecture. As mentioned in the previous sections,

a two-layer feed-forward NN network with a single hidden layer

was used in this study. To fully define the network architecture,

the number of neurons was optimized based on the mean

square error (MSE), which can be calculated by the following

equation:

MSE5
1

N

XN

i51

ðyi;actual2yi;predictedÞ2 (2)

where yi, actual and yi, predicted are the experimental and predicted

adsorption efficiencies, respectively

N is the number of number of data points.

The results in Figure 1 show that 1 neuron had the highest

MSE (5.834) among the number of neurons selected. Increasing

the number of neurons from 1 to 2 slightly decreased the MSE

to 4.795. The lowest MSE (0.00748) was found when the num-

ber of neurons is 10.

The MSE initially decreased with an increase in the number of

neurons until a minimal was reached at 0.00748 and increased

thereafter. A similar observation was reported by Ghandehari

et al.18 in their work on modelling crossflow microfiltration

using ANN and Yetilmezsoy et al.16 where they were modeling

Pb(II) adsorption from aqueous solutions by Antep pistachio

shells. The increment at higher neuron numbers can be ascribed

to the characteristics of the MSE performance index and the

input vector used.16 On the basis of these results, 10 neurons in

the hidden layer were considered optimal.

Effect of Learning Algorithm. The learning algorithm is another

parameter that deserves attention because different learning
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algorithms can produce a network with different accuracy

towards specific data. The Levenberg-Marquardt (TRAINLM),

Powell-Beale Restarts (TRAINCGB), Fletcher-Reeves Update

(TRAINCGF), and Quasi-Newton (TRAINBFG, TRAINOSS)

learning algorithms were tested through trial and error to dis-

cover the best performing algorithm for the data used in this

study. The best algorithm was selected based on regression (R2)

value and MSE. The results are summarized in Table I.

A good training algorithm should have a high R2 but a small

MSE. The TRAINLM learning algorithm had the highest R2 val-

ues, ranging from 0.9997 to 1.000, and TRAINOSS algorithm had

the lowest values. These results clearly indicate that TRAINLM is

the best training system for the data used in this study. Turana

et al.19 found TRAINLM to be the optimum learning algorithm

in modeling the biosorption of Zn(II) from leachate.

Effect of Transfer Function. There are three transfer functions

used in creating and configuring a network. These are: log-

sigmoid (logsig), tan-sigmoid (tansig), and purelin. The logsig

function generates outputs between 0 and 1 as the neuron’s net

input goes from negative to positive infinity as shown by the

following equation:

f xð Þ5 1

11e2x
(3)

On the other hand, the tansig function generates outputs between

21 and 1 as can be deduced from the following equation:

f xð Þ5 2

11exp ð22xÞ21 (4)

Occasionally, the linear transfer function purelin is used and it

lets the network produce values outside the range 21 to 11.

This function is mostly used in the output layer but in the pres-

ent study it was tested in the input layer because the perform-

ance of these functions can be influenced by the data used. The

three training functions were used with the purpose of finding

the best function for the modeling of Pb(II) removal from water

using polymer-clay composites synthesized via the melt-

blending method. In all the networks, the purelin function was

used in the output layer. The results (shown in Table II) are

reported in terms of MSE and R2.

The network trained with the tansig function had the lowest R2

(0.9999) and the lowest MSE values (0.0069). When the purelin

function was used in the input layer, the R2 was the lowest at

0.9864 and the MSE was highest at 15.52. On the basis of these

results, the tansig function was selected as the best for training the

network. After the optimization tests, a two-layer network with 10

neurons in the hidden layer and tansig function in the input was

adopted for modeling the adsorption of Pb(II) using polymer-clay

composites fabricated using the melt-blending method.

Effect of Data Distribution. ANN is a data-based modeling

tool. The set of data is divided into three categories: training,

validation, and testing data. The amount of data in each of

these categories can have an effect on the performance of the

network, yet most studies have ignored this fact. The partition-

ing of the samples is reported in percentages. Unless otherwise

specified, a network contained 3 inputs, 10 hidden layers, and 1

output.

From these results, it can be seen that varying the training data

from 60% to 80% did not change the training accuracy as R2

stood at 1.000 in all the cases (Figure 2). The network with 10%

validation data gave the highest validation R2 (1.0000). In the test

data, 10% and 15% gave R2 5 1.0000 while 20% showed the low-

est R2 (0.99556). The ideal data partitioning was identified by the

R2 of the total (overall) process; hence 70 : 15 : 15 was found to

be the optimum distribution ratio for the data used in the model.

This decision was supported by the MSE for the 3 models: 0.0093

(80 : 10 : 10), 0.0072 (70 : 15 : 15), and 0.0348 (60 : 20 : 20).

Network Application

The optimal network designed to model the adsorption of

Pb(II) from water using polymer-clay composites was tested in

Table I. Performance Evaluation of Network Based on Training Algorithm

Learning algorithm

TRAINLM TRAINBFG TRAINOSS TRAINCGB TRAINCGF

Train 1.000 0.9963 0.7479 0.9997 0.9980

Validation 1.000 0.9928 0.8317 0.9959 0.9989

Test 0.9997 0.9990 0.7908 0.9996 0.9984

Total 0.9999 0.9954 0.7590 0.9996 0.9981

MSE

Total 0.0077 20.28 292.1 0.5412 1.393

Figure 1. Variation of the number of neurons with MSE.
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modeling the adsorption of Pb(II) in water by EVA-C20A, EVA-

MD, PCL-C20A, and PCL-MD composite. Experimental data

used for this purpose were obtained by varying the contact

time, that is, the adsorption contact time was the input. The

agreement between the experimental and predicted adsorption

efficiency is depicted in Figure 3.

In this work, the accuracy of the ANN to predict the adsorption

efficiency was based on R2. As it can be seen from Figure 3, the

lowest R2 is 0.9998 and the highest R2 is 1.000. This suggests

that there is a high correlation between the actual and the pre-

dicted adsorption efficiency indicating that the network was

configured well. It is obvious that the ANN is suitable for mod-

eling the adsorption of Pb(II) on clay-polymer composites fab-

ricated via the melt-blending technique. The network was then

used to model the new adsorption results. These results were

obtained using C20A-PCL as an adsorbent.

Adsorbent Performance

To the best of our knowledge, the C20A-PCL composites fabri-

cated via the melt-blending technique have never been used in

water treatment. The C20A-PCL composite prepared in this

work was tested for the removal of Pb(II) from water. As men-

tioned in “Fabrication of Composites Section,” dry sodium sul-

fate was used to enhance the water permeability in the

composite. It is important that water penetrate the composite

with considerable ease because the composites are 0.5 mm

thick, which means that at 3% (w/w) filler content there would

be few clay particles on the surface of the composite. Another

reason for using this salt was that the melt-blending procedure

applied in this work involved blending and extruding. The force

applied during extrusion can result in a tight composite. The

clay possesses the adsorption active sites and the polymer is just

a support; it is therefore vital that the analyte solution penetrate

Figure 2. Data distribution (train: validate: test): (a) 80 : 10 : 10; (b) 70 :

15 : 15; and (c) 60 : 20 : 20. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Table II. Performance Evaluation of Network Based on Training Function

Transfer function

Logsig Purelin Tansig

R2 0.9996 0.9864 0.9999

MSE 0.0552 15.52 0.0069

Figure 2. (Continued)
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the composite favorably so that the Pb(II) ions are exposed to

almost all the active sites.

Effect of pH. The hydrogen-ion potential (pH) is an adsorption

parameter that needs special consideration. The pH determines

the surface charge of adsorbents and the polarity of the adsorb-

ents has an impact on adsorption efficiency. At lower pH the

analyte solution would have a high concentration of hydrogen

ions in the form of hydronium (H3O1) ions. In the event the

adsorbent is a nucleophile (e.g., bentonite clay) and the adsorb-

ate is an electrophile (e.g., Pb(II)), the hydronium ions could

compete for adsorption sites with the analyte. The high concen-

tration of H3O1 ions could also obstruct the movement of the

adsorbate towards the adsorbent through repulsion, thereby

limiting contact between the adsorbent and the adsorbate.

Under higher pH conditions, there would be a high concentra-

tion of hydroxyl (AOH) ions and they will complex with ions

such as Pb(II).20 The effect of pH on the uptake of Pb(II) from

aqueous solutions using C20A-PCL composites is shown in

Figure 4. The experimental adsorption efficiency is compared

with the adsorption efficiency predicted using the ANN model.

At low pH (pH 1–5.5), the adsorption efficiency increased as a

result of the strong attraction that exists between the hydro-

nium ions and the adsorbent leading to repulsion of Pb(II)

ions.8 At a pH of above 5.5, there is an increase in the adsorp-

tion efficiency. This observation can be ascribed to the disap-

pearance of free Pb(II) ions in the solution due to interaction

with the hydroxyl groups. The optimum pH for the adsorption

of Pb(II) occurs at pH 5.5.8,9

Effect of Contact Time. The variation of the adsorption effi-

ciency with the contact time is shown Figure 5. This figure

shows that the adsorption reached equilibrium after 6 h with a

maximum adsorption efficiency of 87%. This is remarkable con-

sidering that the matrix (PCL) of the composite is hydrophobic.

The correlation between the experimental data and the data

predicted using the ANN model is impressive.

Figure 3. Correlation between predicted adsorption efficiency and the adsorption efficiency for: (a) EVA-C20A; (b) EVA-MD; (c) PCL-C20A; and (d)

PCL-MD composites. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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To understand how the amount of adsorbed metal changes with

time, kinetic models were applied. The pseudo-first-order and

the pseudo-second-order models are widely used for this pur-

pose. The pseudo-first-order equation is given as follows:2

log qe2qtð Þ5log qeð Þ2
k1

2:303
t (5)

where qe is the adsorption capacity at equilibrium; qt is the

adsorption capacity at time t; k1 is the first-order rate constant

Kinetic parameters of this model were calculated from the slope

of the linear plot of log (qe 2 qt) versus t. The second-order

equation is given as follows:2

t

qt

5
1

k2q2
e

1
t

qe

(6)

where k2 is the second-order rate constant

If the second-order kinetics is applicable, then the plot of t/qt

against t should show a linear relationship.

The plots are shown in Figure 6. From this figure, it is seen that

the pseudo-first-order model has the lowest R2 value as com-

pared to the pseudo-second-order model. The R2 suggests that

pseudo-second-order model is suitable to describe the adsorp-

tion of Pb(II) onto the C20A-PCL.

Effect of Temperature: Thermodynamic Studies. The effect of

temperature ranging from 303 to 343 K on the performance of

the C20A-PCL composite in the extraction of Pb(II) initial con-

centration of 200 mg/L from water at pH 5.5 was investigated.

The experimental results are compared with the ANN predicted

results in Figure 7. Evidently, increasing the temperature from

303 to 328 K resulted in an increase in the adsorption efficiency

from 88% to 91%. A further increase to 343 K caused

an aggressive decrease in the percentage of Pb(II) adsorbed to

82%. A similar trend was reported by Yetilmezsoy et al.16 on

their work on Pb(II) adsorption from aqueous solution by

Antep pistachio.

Figure 5. Adsorption kinetics of Pb(II) on PCL-C20A at pH 5.5, Co 5

200 mg/l, and T 5 20�C. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 4. Effect of pH on the adsorption of Pb(II) using PCL-C20A compos-

ite at an initial concentration of 200 mg/l and T 5 20�C. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 6. Kinetic models: (a) pseudo-first-order; and (b) pseudo-second-order. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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The concept of adsorption is based on the “collision” between

the adsorbate and the adsorbent. The observed increase in

adsorption efficiency can be attributed to an increase in the

mobility of the ions. It is generally accepted that at higher tem-

peratures, molecular interaction forces (both chemical and physi-

cal) are weakened and this explains the decrease in the amount

of Pb(II) adsorbed at T 5 70�C. To obtain a deeper insight into

the effect of temperature on the uptake of Pb(II) by the C20A-

PCL composite, the thermodynamic feasibility of the study was

determined by using the thermodynamic parameters: free Gibbs

energy (DG0), enthalpy (DH0), and entropy (DS0). DG0 was com-

puted using the following relation:

DGo52RT ln Kc (7)

where R is the gas constant (8.314 J mol21 K21); T is tempera-

ture (K); Kc is the apparent equilibrium constant (Kc) of the

adsorption and is defined in terms of the Pb(II) adsorbed at

equilibrium (Cads), and the equilibrium Pb(II) concentration

(Ce) and can be calculated by the following equation21:

Kc5
Cads

Ce

(8)

The values of DH0 and DS0 were calculated from the slope and

intercept of the plot of lnKc versus 1/T.21

ln Kc5
DS0

R
2

DH0

RT
(9)

Equation (9) assumes that there is a linear relationship between

the lnKc and 1/T. The thermodynamic parameters tabulated

using this equation is given in Table III.

It has been reported that negative values of DG0 indicate sponta-

neous adsorption while positive values mean that the adsorption

process is nonspontaneous.22 According to Errais et al.22 negative

values of DG0 indicate that the adsorption process is thermody-

namically feasible. In that regard, the DG0 values in Table III

mean that the adsorption of Pb(II) on the C20A-PCL composites

is not thermally feasible in the temperature range used. In our

Table III. Thermodynamic Parameters

T (K) DG� (KJ mol21) DH� (KJ mol21) DS� (J mol21 K21)

303 30.82

318 36.76 213.82 255.18

328 37.61

Figure 7. Effect of temperature on the adsorption of Pb(II) at pH 5.5, and Co 5 200 mg/l. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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previous work on bentonite/polymer blend composites it was

found that the adsorption of Pb(II) is thermally feasible at 293

K.23 The observed increase in the adsorption efficiency with an

increase in temperature (from 313 to 323 K) could be due to the

enhanced mobility of adsorbate molecules rather than thermody-

namic feasibility. DG0 can also be used to predict the adsorption

mechanism. Adsorption of heavy metals can occur through

chemisorption, physisorption, or ion-exchange. S€olener et al.24

stated that DG0 for physical adsorption ranges between the mag-

nitudes of 20 and 0 kJ mol21 and generally range between 20

and 80 kJ mol21 in cases of coexistence of chemisorption and

physisorption. The DG0 values shown in Table III show that the

adsorption of Pb(II) was mostly through the coexistence of

chemical and physical adsorption.

Just like DG0, the magnitude of DH0 could be used to predict the

dominant mechanism involved in the adsorption process, i.e.

chemical or physical interactions. Adsorption enthalpies over the

range of 80 and 420 kJ mol21 signify electrostatic adsorption.

Rahmani et al.21 reported that an enthalpy of less than 80 kJ

mol21 indicates that the adsorption involves physisorption.

According to Li et al.25 the physical adsorption with an enthalpy

in the range of 4 and 8 kJ mol21indicates Van Der Waals interac-

tions, whereas in the range of 8 and 40 kJ mol21hydrogen bond-

ing is the main interaction. As can be seen from Table III, the

removal of Pb(II) in the present study was mostly through

hydrogen bonding between the bentonite and the adsorbate sug-

gesting that the adsorbed metal was hydrated. This finding makes

sense because at pH 5.5 Pb(II) may exist as Pb(OH)1. The nega-

tive DS0 values signify that there is a decrease in the randomness

at the composite—Pb(II) solution interface.22,26

CONCLUSIONS

An ANN model has been successfully developed for the predic-

tion of the adsorption efficiency of Pb(II) from water using clay-

polymer composites fabricated via the melt-blending technique.

The model was to predict the effect of pH, contact time, and

temperature on the removal of Pb(II) from water by a C20A-

PCL composite. The correlation was outstanding. Pertaining to

the composite performance, it was remarkable to note that with

a filler content of 3% (w/w), it could remove 87% Pb(II) from

water, yet it is 0.5 mm thick. Thermodynamic studies revealed

that the uptake of Pb(II) from water using the clay-polymer

adsorbents was not favorable at temperatures ranging between

303 and 328 K. The findings of this research are expected to

stimulate renewed interest in adsorption as a method for water

treatment. To date, the application of adsorption in water-

treatment systems has been hindered by the problems posed by

using the powder adsorbents. Such problems include incomplete

recovery of the adsorbent after the adsorption process.
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